C.5.2. Carbon Dioxide Transport

A. How is carbon dioxide transported?

1. In all active tissues, metabolism generates, as a waste, carbon dioxide (=CO ₂).	2. This CO ₂ has to go back to the lungs to be exhaled. This transport is also performed by the blood flow.
 3. There are three transport systems for CO₂: Diffused in plasma (10%) Bound to the hemoglobin molecule (20%) Converted to bicarbonate ions (70%) 	4. CO_2 , just like O_2 , is dissolved in the plasma of blood. But because CO_2 dissolves much better than oxygen (about 20 x), this amounts too much more CO_2 being transported by the plasma than O_2 (plasma only carries about 0.5% of the total oxygen).

B. CO₂ is bound to hemoglobin.

1. It is also possible for CO ₂ to bind to the hemoglobin molecule.	2. In this case, the CO ₂ is bound to the globin part of the hemoglobin and not to the heme part. So, it does not interfere with the oxygen transport!
3. In fact, it is slightly easier for hemoglobin to bind with CO ₂ if there is less binding of that same hemoglobin with oxygen.	4. This is very nice! As erythrocytes flow towards active tissue, the oxygen content of the hemoglobin molecules decreases (as it gives oxygen to the tissue).
5. This 'release' of oxygen makes the hemoglobin molecule more sensitive to CO ₂ .	6. In some countries, this is called the Haldane effect.

C. CO_2 is transported as bicarbonate ions.		
1. This is the main transport route for CO_2 , which takes care of 70% of the total transport of CO_2 .	2. This is a chemical reaction that binds CO_2 with water (H_2O) to create carbonic acid:	
$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$		

3. 4. In principle, this reaction can take There is however an **enzyme** that place anywhere in the body, as long as increases the speed of this reaction. there is water. But the reaction is very This enzyme is **carbonic anhydrase** slow. and, this is the important part, this enzyme is only available in the erythrocytes! 5. 6. So, the CO₂ has to diffuse into the The next important thing is that erythrocyte to be bound to water. carbonic acid (=H₂CO₃) is not stable but dissociates (= splits) into one hydrogen ion (=H+) and one bicarbonate ion $(=HCO_3^-)$. CO_2 H₂CO₃ ΗО → HCO₃ carbonic anhydrase 8. So, in summary, the CO₂ molecule we The bicarbonate ions (together with started with, is converted into a the H⁺ ions) can diffuse into the plasma (where they play an important role in bicarbonate ion. the buffer system; see later). 9 10. Note that the reaction from CO₂ to This is of course what happens in the bicarbonate is reversible. It may also lungs; the bicarbonate ions are go the other way. converted back, in the erythrocytes, to CO_2 to be exhaled in the air.

D. The chloride shift.

1.	2.
There is however one small problem.	The H ⁺ ion is bound to hemoglobin
Both H ⁺ and HCO ₃ - are ions and have a	molecule, thereby neutralizing its
charge.	charge. This is actually the basis for the
	Bohr effect.

3. But the negative bicarbonate ions diffuse out of the erythrocytes into the plasma (concentration effect; there is more bicarbonate inside than outside the red blood cell).	4. But this would make the erythrocyte more positive . To compensate for this charge, other (negative) ions will shift to inside the cell; the most common negative ion is the chloride ion (=Cl ⁻).
5. Therefore, this compensation system is called the Chloride-shift .	6. We will talk more about all this in the Acid Base System (coming)