C.2. Upper Respiratory Airways

A. Nose and Mouth:

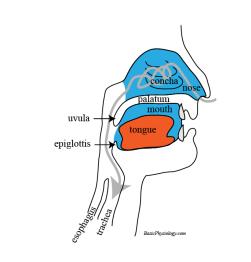
1.

As air flows into the body, during inspiration, it flows through the following structures:

- 1. nasal cavity
- 2. oral cavity
- 3. pharynx
- 4. larynx
- 5. trachea
- 6. bronchial tree

2.

During the inspiration, the inspired air is modified as follows:

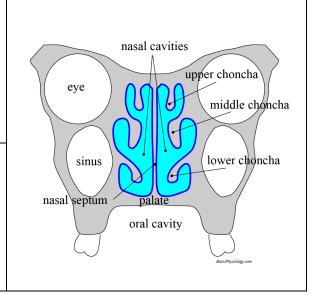

- a. The airways **clean** the air from large particles (larger than 4 micron).
- b. The air is **humidified** (makes it 'wet')
- c. The **temperature** of the air is increased to body temperature.

3.

During inspiration, the airflow becomes very **turbulent**. This is due to structures in the nasal cavity such as the **concha**, which obstructs and diverts the air flow.

4.

This is good because this turbulence causes close contact between the air and the **mucosa** that lines the wall of the nose, mouth etc. thereby trapping large particles.


B. The Nasal cavity:

1

The **nasal cavity**, from the nostrils to the nasopharynx, consists of two cavities (in blue), left and right, divided by a nasal **septum**. It is separated from the mouth by the **palate** (= palatum).

2.

The nose has three **concha's** (upper, middle and lower) in each cavity. These structures help in increasing the mucosal surface and in creating air turbulence, which also increases the chances of detecting a smell.

3.

The nose fulfills several functions:

- a. Detect smells (**olfactory** receptors which are connected to the **olfactory nerves**)
- b. Cleans the air from large particles (all particles > 4 micron gets stuck to the wet mucosa)
- c. Humidifies the air
- d. Works as a sound box to

 modulate your voice (your

 voice sounds different when

 you pinch your nostrils or when

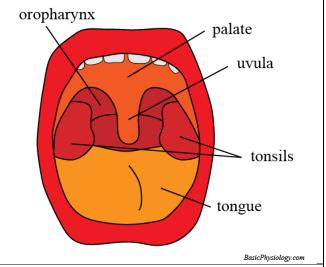
 you have a cold!)

4.

The nose also protects you from inhaling toxic material. When you accidentally inspire large or irritating particles, the **sneeze reflex** is initiated to expel the irritants.

C. The Oral cavity:

1.


The **oral cavity**, from the lips to the oropharynx, is the cavity that we use to chew our food, with the help of our teeth and mix this with our saliva.

2.

Like the nose, it also functions as a **resonating** box to modulate our voice (generated by the vocal cords further down in the larynx). The tongue helps in all these activities. It obviously also functions as a passageway for air.

3.

Between the nasal cavity and the oral cavity lies a bony division, the **hard palate**. You can feel it with your tongue.

4.

Behind the hard palate is the **soft palate**, which is essentially a muscle. At the end of that is the **uvula**. That uvula is important because it can close the nasal cavity when food or fluid is taken into the oral cavity.

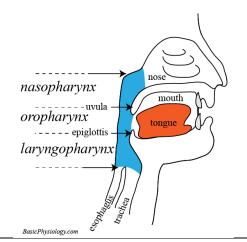
D. The Pharynx:

1.

The pharynx is the **crossroad** between, on the one hand, the nasal and oral cavities, and, on the other hand, the larynx/trachea (for airflow) and the esophagus (for fluids and food).

2.

The pharynx consists of three parts:


- a. the **nasopharynx**: located behind the nasal cavity
- b. the **oropharynx**: behind the oral cavity
- c. the **laryngopharynx**; from the oropharynx down to the larynx.

3.

The **nasopharynx** conducts (only) air to the oropharynx.

4

The **oropharynx** is the space behind the mouth that allows both air and food/fluid to pass through.

5.

The **uvula** is an extension of the palate. This uvula, together with the soft palate, closes the nasopharynx and the nose cavity from the oropharynx so that food, and especially fluid, cannot enter the nose cavity from behind the tongue!

6.

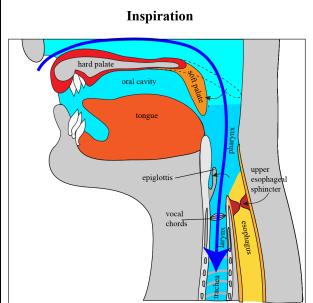
The **oropharynx** contains the **tonsils** (=adenoids): lymphoid organs that protect the body from invading microbes etc. There are actually several lymphoid tissues in this region but these are the most important.

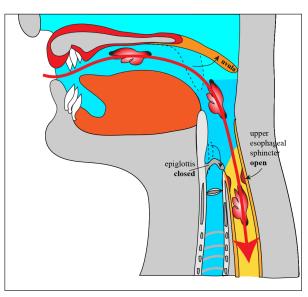
7.

If they become too big, especially in young children, then they are often removed (=tonsillectomy) to improve air flow.

8.

The laryngopharynx runs from the oropharynx to the larynx. Both air and food/fluid go through it. At its junction with the larynx, the **epiglottis** is located which determines whether the passageway to the larynx is open or not.


9.


The epiglottis plays an essential role in determining whether the larynx is **closed** (for the passage of fluid and food into the esophagus) or **open** (for the passage of air or for speech).

10.

Note that the uvula divides the oropharynx from the nasopharynx and that the epiglottis divides the laryngopharynx from the oropharynx.

E. Respiration vs. Swallowing:

Swallowing

- 1. You may now have realized how complex the structures and the functions of the nose, the mouth, the pharynx, the larynx, and the esophagus are. They all have to work together!
- The most beautiful example of this collaboration is what is happening when a) one inhales air and b) when one swallows food.
- 3. In the diagram above, both situations are depicted; left **respiration** and right **swallowing**.
- During **inspiration**, the soft palate closes the oral cavity, the epiglottis opens the pharynx and the upper esophageal sphincter is closed.
- 5. The opposite happens during **swallowing**: then the uvula closes the nasal cavity, epiglottis closes the pharynx and the upper esophageal sphincter is opened.
- 6. This is how the 'air' stream and the 'food' stream, which both pass the pharynx, are propelled into the right direction!